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ABSTRACT
We derive and implement an algorithm that takes noisy mag-

netic resonance velocimetry (MRV) images of Stokes flow and in-
fers the velocity field, the most likely position of the boundary, the
inlet and outlet boundary conditions, and any body forces. We do
this by minimizing a discrepancy norm of the velocity fields be-
tween the MRV experiment and the Stokes problem, and at the
same time we obtain a filtered (denoised) version of the original
MRV image. We describe two possible approaches to regular-
ize the inverse problem, using either a variational technique, or
Gaussian random fields. We test the algorithm for flows governed
by a Poisson or a Stokes problem, using both real and synthetic
MRV measurements. We find that the algorithm is capable of re-
constructing the shape of the domain from artificial images with
a low signal-to-noise ratio.

1 INTRODUCTION
Magnetic resonance velocimetry is a noninvasive experi-

mental technique that can measure all three components of a
three-dimensional (3D) velocity field, although these images are
often noisy. Combining a priori knowledge (in the form of a
physical model) with noisy experimental data, yields the possi-
bility of both inferring unknown quantities (e.g. pressure) and
reconstructing (de-noising) the MRV signal. Inverse problems
such as this for the Navier–Stokes equations have been inten-
sively studied during the last decade, mainly enabled by the in-
crease of available computing power. Recent applications in fluid
mechanics range from the forcing inference problem [1], to the
reconstruction of particle image velocimetry (PIV) signals [2]
and the identification of optimal sensor arrangements [3,4]. Reg-
ularization methods for ill-posed problems are reviewed in [5]
and [6], from a Bayesian and a variational perspective, respec-
tively, and the well-posedness of such Bayesian inverse problems
is addressed in [7].

In a recent study [8], the inverse problem of finding the
Dirichlet (inlet) boundary condition, to match a Navier–Stokes
problem solution with an MRV image, is treated for steady 3D
flows in a glass replica of the human aorta. Their MRV mea-
surements are used only in a restricted domain that excludes the
near-wall regions. The model-data discrepancy is measured with
the L2-norm and additional regularization terms are used for the
boundary condition. The goal is to improve near-wall velocity
predictions and increase the accuracy of the computed wall-shear
stress of blood flows, in order to assist in the clinical assessment
of endothelial disorders. The same formulation is extended to
periodic flows in [9, 10]. The authors use the harmonic bal-
ance method for the temporal discretization of the Navier–Stokes
problem, and report that their method is 15 times faster than its
traditional unsteady counterpart. In [11] the problem of infer-
ring both the Dirichlet (inlet) boundary condition and the initial
condition is studied for unsteady blood flows and 4D MRV data,
with applications to cerebral aneurysms for 2D and 3D unsteady
flows. We note that the above studies [9, 10, 11] consider rigid
(i.e. non-flexible) boundaries and require a priori an accurate
(and time-averaged) geometric representation of the blood ves-
sel.

To find the geometry of the blood vessel, computed tomog-
raphy or magnetic resonance angiography is often used and the
acquired signal is subsequently reconstructed, segmented, and
smoothed. This process not only requires substantial effort and
the design of an additional experiment, but it also introduces geo-
metric uncertainties [12, 13], which, in turn, affect the predictive
confidence of arterial shear-stress distributions and their map-
pings [14]. More importantly, the assumption of rigid boundaries
implies that a time-averaged geometry has to be used, as most
problems in haemodynamics involve flexible boundaries and pe-
riodic flows. A more consistent approach to this problem would
be to include the blood vessel geometry in the reconstruction pro-
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cess. In this way, the physical model can better adapt to the MRV
experiment and correct the geometric errors. In this case, only a
starting guess is needed for the blood vessel geometry. This start-
ing guess can be obtained by automatically segmenting the MRV
data to obtain an approximation of the blood vessel boundary.

This paper considers only 2D steady Stokes flow. A fu-
ture paper will extend the methods discussed hereafter to the
2D steady Navier–Stokes problem. This paper is structured as
follows. In section 2.1 we formulate a shape inference (recon-
struction) algorithm. Section 2.2 describes the classical approach
to obtain the generalized gradients for the forcing term and the
boundary conditions. The numerical approach that we adopt is
given in section 2.3. Lastly, applications of the algorithm can be
found in sections 2.4, 2.5, 2.6, 2.7.

2 RECONSTRUCTION OF UNKNOWN QUANTITIES
Let u? be the measurement of a velocity field inside or

around an object Ω•, with boundary ∂Ω•, and u the correspond-
ing prediction using a physical model such as the Stokes equa-
tions with the appropriate boundary conditions. Then the process
of inferring ∂Ω• such that u? ' u(∂Ω•), is an inverse problem.
In the following sections we study problems in which the hid-
den quantities of interest are the geometry of the object Ω•, the
unknown body forces f, and the boundary conditions g.

2.1 Shape of the Object
We first derive an algorithm that infers the shape of an object

Ω•, embedded in an image I ⊂R2 with boundary ∂ I. The image
I depicts the signal u?, acquired from a measurement (e.g. MRV,
PIV), and we assume that the Stokes equation describes the fluid
motion inside or around Ω•.

Error Functional and its Shape Derivative. The dis-
crepancy between u and u? is measured using the functional

J (u) =
1
2
‖u−u?‖2

L2(I) =
1
2

∫
I
(u−u?)2 (1)

where u = (u1,u2) and u? = (u?1,u
?
2). Considering Ω as a de-

formable domain, subject to a speed field V [15, 16, 17] (figure
1), and using Reynolds transport theorem, we obtain the shape
derivative of J along V

DV J (u) =
1
2

(∫
I

(
(u−u?)2)′+∫

∂ I
(u−u?)2(V ·ν)

)
=
∫

I
(u−u?)u′ =

∫
Ω

(u−u?)u′ (2)

where u′ is the shape derivative of u (in the ‘direction’ of V ), ν

is the surface normal vector, V ≡ 0 on ∂ I, and u′ ≡ 0 everywhere
except in Ω.

Ω

I ⊂ R2V

Γ
∂ I

Γi Γo

ν

FIGURE 1: Notation for the Stokes problem in moving domains.

Stokes Problem for the Shape Derivatives. We start
with the following Stokes problem

−∆u+∇p = f in Ω

∇ ·u = 0 in Ω

u = 0 on Γ

−∂ν u+ pν = g on Γi

−∂ν u+ pν = 0 on Γo

(3)

where u is the velocity of the fluid, p the pressure, and ∂ν ≡ ν ·∇.
To find the corresponding shape derivatives problem we start
with the weak form of (3) for test functions v ∈H1(Ω)×H1(Ω),
with v also vanishing at Γ, and q ∈ L2(Ω)

∫
Ω

∇v : ∇u+
∫

Γ

v · (−∂ν u+ pν)−
∫

Ω

(∇ ·v)p

−
∫

Ω

q(∇ ·u) =
∫

Ω

v · f+
∫

Γi

v ·g . (4)

Using the Reynolds transport theorem on (4), we recover the
problem for the shape derivatives (u′, p′),

−∆u′+∇p′ = f′ in Ω

∇ ·u′ = 0 in Ω

u′ =−∂ν u (V ·ν) on Γ

−∂ν u′+ p′ν = g′ on Γi

−∂ν u′+ p′ν = 0 on Γo

. (5)

If the forcing term f does not depend on perturbations of Ω, then
f′ ≡ 0. Otherwise, if f is a field that changes when Ω deforms,
additional physical knowledge is required to specify the form of
f′. The same applies for the boundary condition g and its shape
derivative g′.

At this point, we observe that one can choose a speed field
V to solve the shape derivatives problem (5) for u′. Proceeding
to compute problem (5) for ‘infinitely’ many speed fields of the
form V = δ (x)ν(x), for x∈ ∂Ω, where δ denotes the Dirac mea-
sure, leads to a brute-force estimation of the shape gradient V ?

of (2). Fortunately, the adjoint problem provides a much quicker
method to find V ?.
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Constructing the Adjoint Problem. Multiplying the
shape derivatives problem (5) with test (adjoint) functions (v,q)
we obtain

∫
Ω

v ·
(
−∆u′+∇p′− f′

)
−
∫

Ω

q
(
∇ ·u′

)
= 0 . (6)

After integrating by parts twice, and using the boundary condi-
tions of problem (5), we find

∫
Ω

(
−∆v+∇q

)
·u′ =

∫
Γ

(
∂ν v ·∂ν u−q ∂ν u ·ν

)(
V ·ν

)
−
∫

Γi

v ·g′+
∫

Ω

v · f′ . (7)

We see that

DV J (u)(V ) =
∫

Ω

(u−u?)u′ =
∫

Ω

(
−∆v+∇q

)
·u′ (8)

holds true for all u′ satisfying the boundary conditions of prob-
lem (5) when (v,q) is the solution of the following adjoint prob-
lem


−∆v+∇q = u−u? in Ω

∇ ·v = 0 in Ω

v = 0 on Γ

−∂ν v+qν = 0 on Γi∪Γo

. (9)

Therefore, due to (7) and (8) we find

〈
DV J ,V ·ν

〉
∂Ω

=
〈
∂ν v ·∂ν u−q ∂ν u ·ν , V ·ν

〉
Γ

−
〈
v · g̃, V ·ν

〉
Γi
+
〈
v · f̃, V ·ν

〉
∂Ω

, (10)

with the existence of f̃, g̃ implied by the Hadamard-Zolesio struc-
ture theorem for the shape derivative [15, 16, 17]. If the forcing
and the boundary conditions do not depend on the movement of
the domain Ω, we can consider f′ ≡ 0 and g′ ≡ 0, otherwise a
physical relation must be established between them which de-
pends on the problem at hand. We further restrict our interest
to V ’s that can be defined through ∂Ω’s normal vector ν and a
scalar function ζ defined on ∂Ω (Hadamard parameterization).
Thus, if f′ ≡ 0, g′ ≡ 0, and V = ζ ν , (10) becomes

〈
DV J , ζ

〉
Γ
=
〈
∂ν v ·∂ν u−q ∂ν u ·ν , ζ

〉
Γ

. (11)

Propagating the Boundary of Ω. Formula (11) pro-
vides the functional derivative that drives the geometric gradient
flow minimizing J = 1

2‖u−u?‖2
L2(I). In theory, one can simply

write

x 7→ x+ τζ
?(x)ν(x) for every x ∈ ∂Ω (12)

to deduce the geometric flow for ∂Ω at given pseudotime τ > 0
and for ζ ? = −∂ν v · ∂ν u+q ∂ν u ·ν . However, (12), as is, leads
to inefficient numerical algorithms because the phrase ‘for every
x ∈ ∂Ω’, hides the difficulty of locating a surface in space. Here,
to tackle this problem, we use signed distance functions φ± to
represent general surfaces (closed curves) in R2. Then the object
Ω and its boundary ∂Ω are identified with a particular function
φ± so that the following holds

Ω =
{

x ∈Ω : φ±(x)< 0
}

, ∂Ω =
{

x ∈Ω : φ±(x) = 0
}
.

Consequently, we approximate (12) by transporting φ± under the
speed field V ? = ζ ?ν . The convection-diffusion initial value
problem for φ±(x, t) reads

{
∂tφ±+

◦
V ·∇φ±− ε∆φ± = 0 in I× (0,τ]

φ± = (φ±)0 in I×{t = 0}
(13)

where (φ±)0 denotes the signed distance function of the current
domain Ω, 0 < ε � 1 the diffusion coefficient, and

◦
V :=

◦
V ? :

I→R×R is an extension of V ? : ∂Ω→R×R. If we solve (13)
for φ±(x,τ) we obtain the implicit representation of the perturbed
domain Ωτ , but to do so we first need to extend V ? to the whole
space of the image I. First, observe that V ? = ζ ?ν , where both
ζ ?(x) and ν(x) are defined only on ∂Ω. Therefore, to extend V ?

to I we first try to extend the normal vector ν and then the scalar
function ζ ?.

Initially, the normal vector is only known on the surface ∂Ω,
but, due to the implicit characterization of ∂Ω through φ±, we
can write

◦
ν(x) =

∇φ±
|∇φ±|

= ∇φ± , x ∈ I (14)

since φ± is a distance function, i.e. |∇φ±|= 1. Then, to compute
an extension of the normal vector in I, it suffices to compute the
gradient of the signed distance function.

The traditional method of computing the signed distance
function is to solve a nonlinear hyperbolic equation (wave prop-
agation), namely the Eikonal equation

|∇φ±(x)|= 1 subject to φ±
∣∣
∂Ω

= 0 , x ∈ I. (15)

One way to solve this problem is with level-set methods, which
are well-studied and described in [18,19,20,21,22]. A numerical
algorithm to solve (15), the fast marching method, is given in
[23], having n logn complexity with n the total number of mesh
points. The same algorithm is used to tackle the problem of both
extending V ? and propagating φ± in [24]. We, however, choose
a different approach, which relies on the heat equation [25]. The
fundamental solution of the heat equation, the heat kernel

Φ(x, t) = (4πt)−1e−‖x‖
2/4t , x ∈ R2, t > 0 (16)
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solves ∂tΦ−∆Φ = 0 for limt→0 Φ = δx. Varadhan [26] showed
that the heat kernel is intimately related to distance by proving
that

lim
t→0

(
−2t logΦ(x− y, t)

)
= ‖x− y‖2 , (17)

and extended his results to Riemannian metrics by considering
general diffusion tensors. The same author also proved relation
(17), and its generalizations, from the viewpoint of stochastic dif-
fusion processes in [27]. We justify the use of the heat equation
for the approximation of φ± using a theorem from Varadhan [26].
We slightly adapt this and restrict it to Euclidean distances such
that

d(x,∂Ω) = lim
τ1→0

(
−
√

τ1

2
logu(x,τ1)

)
, x ∈ I (18)

where d(x,∂Ω) is the Euclidean distance between any point x∈ I
and ∂Ω, and u is the solution of heat propagation away from ∂Ω{(

I− τ1∆
)
u = 0 in I

u = 1 on ∂Ω
. (19)

Crane et al. [25] used Varadhan’s results to implement a
(smoothed) distance function computation algorithm which they
called the ‘heat method’. Here, we adapt this algorithm to com-
pute signed distance functions φ±. Therefore, to compute φ± we
first solve (19) for τ1� 1 1. Finally, φ± is given by

∆φ± = ∇ ·X in I

∂ν φ± = X ·ν on ∂ I

φ± = 0 on ∂Ω

, X =−sgn(ψ)
∇u
|∇u|

(20)

with X the normalized heat flux and ψ a signed function so that
ψ(x) is negative for points x in Ω and positive for points x outside
Ω. This intermediate step (the solution of two Poisson problems
(19)-(20) instead of one) is taken to ensure that |∇φ±| = 1. Ac-
cordingly, φ± leads to a natural extension of ∂Ω’s normal vector
ν to I through

◦
ν(x) = sgn(ψ)X(x) , x ∈ I (21)

where the term sgn(ψ) is used to correct the orientation of
◦
ν so

that it points away from ∂Ω. Next, we use the extension
◦
ν to

extend ζ ? to
◦
ζ :=

◦
ζ ?, with the help of the convection-diffusion

problem
∂t
◦
ζ +

◦
ν ·∇

◦
ζ − ε∆

◦
ζ = 0 in I× (0,τζ ]
◦
ζ = ζ

? on ∂Ω× (0,τζ ]
◦
ζ ≡ 0 in I×{t = 0}

. (22)

1For the numerical problem we take τ1 = 10h2 with h the mesh size [25].

In other words, we convect ζ along the predefined
◦
ν-streamlines

and add isotropic diffusion for stabilization (note that
◦
ν-

streamlines may have complicated behaviour and, without diffu-
sion, the problem may not have a unique solution). The timestep
τζ is taken large enough to reach a steady-state.

Finally, we recast the initial value problems (13) and (22)
into their corresponding boundary value problems. This is possi-
ble due to the linearity of the problem and the fact that the time-
dependent solution does not interest us here. Therefore, instead
of problem (13) we solve the elliptic problem

(
I− τAV

)
φ± = (φ±)0 in I (23)

where AV φ± := −ε∆φ±+
◦

V ·∇φ±. Note that (23) propagates
φ± from pseudotime t = 0 to t = τ under the speed field

◦
V . In

the same spirit,


(
I− τζ Aν

) ◦
ζ = 0 in I
◦
ζ = ζ

? on ∂Ω

(24)

replaces (22), with Aν

◦
ζ := −ε∆

◦
ζ +

◦
ν ·∇

◦
ζ , and describes the

propagation of ζ , away from ∂Ω and along
◦
ν , from pseudotime

t = 0 to t = τζ .
To summarize, we propagate the boundary of Ω by execut-

ing three tasks:

1. Compute the heat flux X away from ∂Ω by solving (19) for
τ1� 1, in order to obtain

◦
ν = sgn(ψ)X .

2. Convect the shape gradient ζ ? along
◦
ν , using (24), in order

to obtain
◦

V =
◦
ζ
◦
ν .

3. Convect the signed distance function φ± along
◦

V , using (23)
with timestep τ , in order to obtain the new boundary ∂Ωτ .

Otherwise, if reinitialization of φ± is needed, we additionally
solve (20) immediately after Step 1. Algorithm 1 provides the
instructions in order to obtain

◦
V .

Algorithm 1: Compute Optimal Speed Field
◦

V

Input: u,u?,φ±,ε
begin

1. v,q← Adjoint Problem (u,u?,φ±) (eq. (9))
2. ζ ? ← Shape Gradient (u,v,q,φ±) (eq. (11))
3.

◦
ν ← Normal Vector Extension (φ±) (eq. (19))

4.
◦
ζ ← Extend Function (ζ ?,

◦
ν ,φ±,ε) (eq. (24))

Output:
◦

V ≡
◦
ζ
◦
ν

All of the above methodologies result in an algorithm, com-
pactly presented as algorithm 2, which uses the Stokes problem
to infer the shape of an object Ω•, embedded in an image I.
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Algorithm 2: Shape reconstruction from (Stokes) flow images.

Data input: images (I) depicting the components of u? (measured flow field).
Model input: f (forcing term), g (inlet natural b.c.), ε (level-set diffusion coefficient), (φ±)i=0 (initial level-set).
Optimization input: τi=0 (initial timestep), εtol (tolerance), imax (maximum iterations), `max (maximum line searches).
begin

Zero-th iteration: Set i← 0, solve Stokes problem (3) for ui in Ωi (defined by (φ±)i),
and evaluate the discrepancy functional (1), setting Ji←J (ui).
Geometric gradient flow:
while

(
ε ≥ εtol and i≤ imax

)
do

1.
◦

Vi ← Compute Optimal Speed Field (ui,u?,(φ±)i,ε) (algorithm 1)
Set `search← 0 and repeat

2. (φ±)search← Gradient Flow
(
(φ±)i,

◦
Vi,τi

)
(equation (23))

3. usearch ← Stokes Problem
(
f,g,(φ±)search

)
(equation (3))

4. Jsearch ←J (usearch) (equation (1))
τi← τi/2 if (Jsearch ≥Ji); `search← `search +1

until
(
Jsearch < Ji or `search > `max

)
i← i+1
if
(
Jsearch < Ji

)
then

(φ±)i← (φ±)search, ui← usearch, Ji←Jsearch, τi← 3τi/2
else

terminate (line search could not find a better solution)
ε ← |Ji−Ji−1|/Ji

Output: Reconstructed domain Ω• minimizing J , and filtered velocity magnitude u' u?.

2.2 Forcing and Boundary Conditions
The Stokes problem (3) involves additional parameters, such

as the forcing term f and the inlet natural boundary condition
g. If these parameters cannot be specified with some degree of
certainty, the physical model may not be able to interpret the
experimental velocity fields u?. In turn, this implies that either
the model velocity u will be incapable of approximating the ex-
perimental measurement u? (no matter the shape of Ω), or that
matching u with u? will probably produce a reconstructed do-
main that does not approximate Ω•. This motivates the formu-
lation of a combined optimization problem, in which the afore-
mentioned parameters are included in the reconstruction process,
using similar, yet simpler, methods than those of section 2.1.

Euler–Lagrange System. To evaluate the sensitivity of
the inverse problem to the model parameters, we start by writing
the functional

J (u,v, p,q; f,g) =
1
2

∫
I
(u−u?)2−

∫
Ω

∇v : ∇u−
∫

Γi

v ·g

−
∫

Γ

v · (−∂ν u+ pν)+
∫

Ω

(∇ ·v)p+
∫

Ω

q(∇ ·u)+
∫

Ω

v · f

−N (u,v,q,η) = 0 , (25)

where

N (u,v,q,η) =
∫

Γ

(−∂ν v+qν) · (u−0)+η v · (u−0) (26)

is the Nitsche term for the weak imposition of the no-slip (Dirich-
let) boundary condition with penalty parameter η [28, 29], v is
the adjoint velocity, and q is the adjoint pressure.

The first variations of J with respect to the parameters
(f,g) are

d
dτ

J (. . . , f+ τf′, . . .)
∣∣∣
τ=0

=
〈

∂J

∂ f
, f′
〉

Ω

=
〈
v, f′

〉
Ω

(27a)

d
dτ

J (. . . ,g+ τg′)
∣∣∣
τ=0

=
〈

∂J

∂g
,g′
〉

Γi
=
〈
−v, g′

〉
Γi

(27b)

where f′ and g′ are perturbations of f,g, respectively, and are not
to be confused with the shape derivatives f′, g′, which are zero.

Regularization.
Usually there are many different sets of parameters (Ω, f,g),

producing solutions u that minimize J . For example, it is pos-
sible that the solution u is invariant under certain perturbations
of the model parameters, or that two parameters have a counter-
acting effect on u. Numerically, this means that the solution to
the optimization problem will be particularly sensitive to the op-
timization parameters (step-size, initial guess etc.), and difficult
to converge. Therefore, we need to regularize the problem with
one of the methods below.

Variational Techniques. The need for regularization
arises from the assumption that f,g, for example, are functions
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in L2, i.e. square-integrable. As L2 is a very rich space of
‘wild’ functions, we would like to restrict f,g to a subspace of
L2, of ‘tamable’ functions: for instance, Hk, k > 0, the space of
square-integrable functions with k square-integrable derivatives,
for which Hk ⊂ L2. For any function u to be a member of Hk,
it suffices to show that ‖u‖Hk < ∞. Therefore, to regularize f we
may add the term

R(f,α) =
α

2
‖f− f0‖2

H1(Ω) =
α

2

(∫
I
(f− f0)

2 +∇(f− f0)
2
)

to the functional (25), where α > 0 is a weighting constant, and
f0 is the prior knowledge; in other words, we expect f to be close
to f0. Adding R(f,α) to (25), (27a) becomes

〈
∂J

∂ f
, f′
〉

Ω

=
〈
−α∆f+αf+

(
v−αf0 +α∆f0

)
, f′
〉

Ω

(28)

yielding a screened Poisson problem for f. We could instead con-
sider only the H1-seminorm

R(f,α) =
α

2
|f− f0|2H1(Ω) =

α

2

(∫
I
∇(f− f0)

2
)

and find

〈
∂J

∂ f
, f′
〉

Ω

=
〈
−α∆f+

(
v+α∆f0

)
, f′
〉

Ω

(29)

yielding a Poisson problem for f. In both of these cases we
smooth f by solving a Poisson problem. The same regulariza-
tion techniques apply to g. Regularization methods for ill-posed
variational inverse problems with applications to image process-
ing are reviewed in [6].

Gaussian Random Fields. Interestingly, we can reach
appropriate regularization norms R by formulating a stochastic
problem. We first consider a Hilbert space (e.g. L2) of Gaussian
random fields (functions). The Gaussian measure γ has the prop-
erty that its finite-dimensional projections are multivariate Gaus-
sian distributions, and it is uniquely defined by its mean m ∈ L2,
given by

m = Ex =
∫

L2
x γ(dx) , (30)

and its covariance C : L2×L2→ R, for any pair h,h′ ∈ L2, given
by

C(h,h′) =
∫

L2

〈
h,x
〉〈

h′,x
〉

γ(dx) . (31)

The above (Bochner) integrals define integration over the func-
tion space L2, under the measure γ . We also define the covariance
operator C : L2→ L2 as

Ch =
∫

L2
x
〈
h,x
〉

γ(dx) (32)

and note that
〈
Ch,h′

〉
=C(h,h′). What we have written above is

simply a generalization of Gaussian measures in Hilbert spaces,
and fortunately makes sense because the (Bochner) integrals are
well defined due to Fernique’s theorem [30]. As we mentioned
before, to regularize the problem we restrict our attention to a
subspace of L2 having smoother functions (e.g. H1). Now, we
will see that an appropriate subspace can also arise by choosing
a covariance operator C (which acts as averaging/smoothing).

As any Gaussian measure in L2 is uniquely defined by its
mean and covariance operator, we write γ =N (m,C). It can be
shown that there is a natural Hilbert space Hγ that corresponds to
γ and that [31]

Hγ =
√
C
(
L2) ,

i.e. any function in Hγ belongs to the image of
√
C. The corre-

sponding inner product〈
h,h′

〉
γ
=
〈
C−1/2h, C−1/2h′

〉
(33)

defines the norm ‖h‖2
γ , which is the variance of h. Therefore,

an appropriate subspace of L2 is Hγ , given that we can specify a
covariance operator for, e.g. the behaviour of the model param-
eter f as a Gaussian random field. This is how prior knowledge
is now inserted into our formulation to mitigate the ill-posedness
of the inverse problem. For example, if we take C = −σ2∆−1,
for R 3 σ > 0 and consider functions u in Ω such that u

∣∣
∂Ω

= 0,
from (33) we find that 2

〈
h,h′

〉
γ
=

1
σ2

〈
∇h,∇h′

〉
with the inner product generating the H1-seminorm, and thus
Hγ(Ω) = H1

0 (Ω). More examples can be found in [35, Chap-
ter 7.21]. This approach, in which the appropriate norm R is
implicitly defined through C by considering randomness in the
model parameters, is discussed in [5] and provides an immediate
link between variational approaches and Bayesian inference.

2.3 Numerics
To solve the previous problems numerically, we adopt an es-

sentially meshless method [36], known as the fictitious domain or
immersed boundary finite element method. This method presents

2In general, we can consider the fractional Laplacian operator −∆s, for s > 0
[32,33], or a covariance kernel function (e.g. squared exponential) as in machine
learning [34].
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Ω

I ⊂ R2

∂Ω

∈ T ▫
h ∈ T ▹

h h∈ F▹
h

FIGURE 2: Notation for the fictitious domain method, also
known as the immersed finite element method.

several advantages over traditional mesh-dependent methods
when working with complicated, moving geometries. In partic-
ular, we implement the fictitious domain cut-cell finite element
method, introduced by Burman and Hansbo [37,38] for the Pois-
son problem, and extended by Massing et al. [29] to the Stokes
problem. The method uses Nitsche’s [28] approach: a consistent
and stable way to satisfy Dirichlet boundary conditions on ∂Ω

(the immersed boundary), in a weak sense.
Subsequently, to discretize the problem, we define Th to be a

tessellation of I produced by square cells (pixels) K ∈ Th, having
sides of length h. We also define the set of cut-cells T .

h consisting
of the cells that are cut by the boundary ∂Ω, and T �

h the set of
cells that are found inside Ω and which remain intact (not cut)
(see figure 2). We assume that the boundary ∂Ω is well-resolved,
i.e. `∂Ω/h� 1 with `∂Ω the smallest length scale of ∂Ω. For
the detailed assumptions on ∂Ω we cite [38]. To every cell K
a bilinear quadrilateral finite element Q1 is assigned, and this
generates the discretized space

Vh =
{

uh ∈C0(I) such that uh|K ∈Q1 for all K ∈ Th

}
(34)

whereQ1 =
{

∑` c` p`(x)q`(y), p`,q` polynomials of deg.≤ 1
}

.
We choose to weakly satisfy the zero-Dirichlet (no-slip) condi-
tion on Γ using Nitsche’s method, and write

∫
Ω

∇v : ∇u+
∫

Γ

v · (−∂ν u+ pν)−
∫

Ω

(∇ ·v)p

−
∫

Ω

q(∇ ·u)+N (u,v,q,η) =
∫

Ω

v · f+
∫

Γi

v ·g (35)

where η = γ/h with γ the penalization constant. The weak form
(35) now holds for all v ∈ H1(Ω)×H1(Ω) (v does not have to
vanish on Γ), and q ∈ L2(Ω). Next, we express the problem in

the discretized space Vh, defined by (34), and let both the veloc-
ity components and the pressure be elements of Vh. As this is
known to violate the inf-sup condition [39] for the Stokes prob-
lem, leading to an unstable numerical scheme, we include an ad-
ditional stabilization term, namely c(uh, ph,qh), to stabilize the
pressure3. The discretized problem then takes the form: find
(uh, ph) such that

a(uh,vh)+b(uh,qh)+b(vh, ph)

+ ju(uh,vh)+ jp(qh, ph)+ c(uh, ph,qh) = i(vh,qh) (36)

holds for all vh ∈Vh×Vh and qh ∈Vh, with

a(uh,vh) :=
∫

Ω

∇vh : ∇uh +
∫

Γ

−(vh ·∂ν uh)

− (∂ν vh ·uh)+
γ

h
(vh ·uh) (37a)

b(uh,qh) :=−
∫

Ω

qh(∇ ·uh)+
∫

Γ

(qhν) ·uh (37b)

ju(uh,vh) := ∑
F∈F.

h

∫
F

γ1h [∇uh][∇vh] (37c)

jp(qh, ph) := ∑
F∈F.

h

∫
F

γ2h3 [∇ph][∇qh] (37d)

c(uh, ph,qh) :=−
∫

Ω

βh2 (−∆uh +∇ph) : ∇qh (37e)

i(vh,qh) :=
∫

Ω

vh · f+
∫

Γi

vh ·g−
∫

Ω

βh2 (f ·∇qh) . (37f)

We briefly explain the purpose of the above forms. First, a is the
discretized Laplacian, supplemented by its boundary conditions,
and b describes the coupling between velocity and pressure so
that the incompressibility condition is satisfied. Thus, a,b and
the first two integrals of the functional i, compose the weak form
of the Stokes equation for the Nitsche problem, given by (35).
Then, ju, jp are the cut-cell ghost-penalization terms [37,38,29],
with the accompanying constants γ1,γ2, for the velocity and the
pressure, respectively. Finally, c and the last integral appearing in
i, are the pressure stabilization terms, with constant β . Note that
∆uh ≡ 0 due to the bilinear finite elementsQ1, which means that
the pressure stabilization is not consistent (it would have been
consistent for Q2 elements).

To compute the integrals we use standard Gaussian quadra-
ture for cells K ∈ T �

h , while for cut-cells K ∈ T .
h , where integra-

tion must be considered only for the intersection K ∩Ω, we use
Mirtich’s approach [40]. Mirtich’s approach relies on the diver-
gence theorem and simply replaces the integral over K ∩Ω with
an integral over ∂

(
K ∩Ω

)
. The boundary integral on ∂

(
K ∩Ω

)
is then easily computed using one-dimensional Gaussian quadra-
ture [41].

Lastly, we consider a basis
{

ϕi
}n

i=1 of Vh and write uh =

∑
n
j=1 u jϕ j, ph = ∑

n
i=1 p jϕ j, vh = ∑

n
i=1 ϕi and qh = ∑

n
i=1 ϕi to find

3Known as pressure-stabilized Petrov–Galerkin (PSPG) method.
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that the solution of the system

(
A B
C D

)(
u
p

)
=

(
F
G

)
(38)

where

Ai j := a(ϕi,ϕ j)+ ju(ϕi,ϕ j) Bi j := b(ϕi,ϕj)

Ci j := b(ϕ j,ϕi) Di j := jp(ϕi,ϕ j)+ c(ϕi,ϕ j)

Fi :=
〈
ϕi, f
〉

Ω
+
〈
ϕi,g

〉
Γi

Gi :=−
〈
βh2f,∇ϕi

〉
Ω

is a finite dimensional approximation of the problem (36). We
solve the above system using the Schur complement; with an it-
erative solver (LGMRES) for the outer loops, and a direct sparse
solver (UMFPACK) for the inner loops, both implemented in
Python’s SciPy library [42].

2.4 Shape Reconstruction with the Poisson Problem
We now test the shape inference algorithm (algorithm 2) for

the reduced problem of Poiseuille flow through a starfish-shaped
pipe (figure 3a). This corresponds to a Poisson problem (instead
of a Stokes problem) with zero-Dirichlet boundary conditions on
the wall. For this test case we pick Ω0 (the initial guess) to be
far enough from Ω• (the ground truth) to test the robustness of
the algorithm. However, for real applications, it would be more
practical to use a general image segmentation algorithm for Ω0.
The rest of the parameters needed to execute the algorithm and to
solve the numerical problems, are summarized in table 1. We cre-
ate a synthetic MRV image by first solving the Poisson problem
in the ground truth domain Ω•, in order to obtain the ground truth
velocity field u•, and then corrupt the image by adding Gaussian
white noise. We define the signal-to-noise ratio (SNR) as

SNR :=
µ2

σ2 , with µ =
1
|Ω•|

∫
Ω•

u•

where σ2 is the variance of the Gaussian white noise, and |Ω•|
the area of Ω•. When the ground truth is known, we also define
the L2-norm reconstruction error as

E :=
‖u−u•‖L2(I)

‖u•‖L2(I)
.

The synthetic MRV image has an SNR of 2.5, and the geometric
flow converges in 42 iterations with E ' 4.0% (figure 3a).

2.5 Shape Reconstruction with the Stokes Problem
Next, we test the algorithm for 2D steady Stokes flow (fig-

ures 3b, 3c) in two different domains: i) a curved channel, and
ii) a blood vessel dummy. We add Gaussian white noise such
that SNR = 2.5. For the curved channel, we start the geometric
flow from a rectangular channel, and after 29 iterations we re-
cover a reconstruction closely resembling the ground truth with

(a) Starfish-shaped pipe (Poiseuille flow out of the page)

(b) Curved channel (Stokes flow, left to right)

(c) Dummy blood vessel (Stokes flow, left to right)

FIGURE 3: Inferring the shape of an object Ω• from synthetic
MRV data (light intensity denotes velocity magnitude). The
dashed cyan line denotes the initial guess Ω0, the solid purple
line the reconstructed domain, and the dashed yellow line the
ground truth (where the lines overlap they seem orange).

E ' 3.5% (figure 3b). For the dummy blood vessel, we start with
a domain Ω0 that resembles Ω•, but perturbed so that it is visibly
narrower before the outlet (as if there was an image segmenta-
tion error), and obtain the reconstructed shape after 25 iterations
with E ' 7.1% (figure 3c). We observe that the reconstruction
deteriorates near neighbourhoods of Γ (the walls) where shape
perturbations have a minor effect on J (where velocity and its
gradients vanish rapidly). This is due to the local stiffness of the
optimization problem and the considerable loss of information
due to noise (the local SNR is very low). Fortunately, this also
means that these local geometric errors will have a small effect
on the local reconstructed velocity field and its gradients.
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TABLE 1: Input parameters for the Stokes shape inference algorithm (algorithm 2).

Model Parameters Optimization Parameters Numerical Parameters

f g ε τζ τi=0 εtol imax `max Res. (n) γ γ1 γ2 β

Starfish-shaped pipe (Poiseuille flow)

(1, ·) · 0.0125 106 0.1 10-6 100 10 2002 px 10 1 · ·

Curved channel (Stokes flow)

(0, 0) (2.5·104, 0) 0.125 106 0.05 10-6 100 10 2002 px 10 1 0.05 0.2

Dummy blood vessel (Stokes flow)

(0, 0) (2.5·104, 0) 0.0125 106 0.005 10-6 100 10 2002 px 10 1 0.05 0.2

2.6 Shape and Forcing Reconstruction with the
Poisson Problem

In this case, the MRV data [43] u? (1282 pixels) correspond
to a real experiment of pipe flow. We use the regularized objec-
tive functional

J =
1

2σ2
u
‖u−u?‖2

L2(I)+
1

2σ2
f
| f − f0|2H1

0 (I)
(39)

with σu = 0.001, σ f = 10, and f0 ≡ 0.1. We use again al-
gorithm 2 and include f (its gradient given by (27a)) in the
same line search that we use for φ± (the domain), and under the
same pseudo-timestep τ . Figure 5a presents a flattened and non-
axisymmetric velocity profile, characterising undeveloped flow.
For Poiseuille flow, f would correspond to −µ−1 ∂ p/∂x, with
µ the dynamic viscosity, ∂ p/∂x the pressure gradient, and the
flow would be axisymmetric and developed. As undeveloped
flow cannot be described by a Poisson equation, the forcing term
f should be considered as a model-error parameter, instead of
a quantity with physical meaning. The domain and the forcing
term are reconstructed after 40 iterations.

2.7 Shape and Boundary Condition Reconstruction
with the Stokes Problem

Finally, we solve the same problem as that in section 2.5
(curved channel), but now we also treat the inlet boundary con-
dition g as an unknown. To be precise, we seek the pair (Ω, g)
that minimizes

J =
1

2σ2
u
‖u−u?‖2

L2(I)+
1

2σ2
g
|gx− (gx)0|2R

where g = (gx,gy) is the natural boundary condition at the inlet,
with gx,gy ∈ R. The starting domain Ω0 is taken as a rectangle,
the initial guess for g is g0 = (−15,0), and the ground truth is
g? =(−25,0). The combined reconstruction for (Ω, g) converges
to the ground truth after 32 iterations (figures 4,5b).
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FIGURE 4: Iterates of the pressure inlet boundary condition gx.

3 CONCLUSIONS
We have developed a prototype method to infer the shape

of objects and the flows inside them from magnetic resonance
velocimetry data. The method relies on (inverse) shape opti-
mization techniques and is formulated in a natural framework
for problems with moving domains. In particular, we implicitly
define the boundaries in terms of signed distance functions and
use Nitsche’s method to weakly enforce the Dirichlet boundary
condition on the moving front. The moving of the domain is
expressed by a convection-diffusion equation for the signed dis-
tance function, which allows topological changes. We introduce
additional unknown model parameters to the inverse problem,
such as the forcing term f and the inlet boundary condition g. We
provide two alternative perspectives for the type of the regular-
ization R one should choose: i) a purely variational perspective
in function spaces, and ii) an approach based on Gaussian mea-
sures and random functions. However, the choice of R largely
depends on the nature of the a priori knowledge. Finally, we
test the methods for the Poisson and the Stokes problems using
both real and synthetic MRV measurements. The present method
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(a) Circular pipe (undeveloped, laminar pipe flow out of the page)

(b) Curved channel (Stokes flow, left to right)

FIGURE 5: Inverse problems for a) (Ω, f ) using real MRV data
[43], and b) (Ω,g) using synthetic MRV data (light intensity de-
notes velocity magnitude). The dashed cyan line denotes the ini-
tial guess Ω0, the solid purple line the reconstructed domain, and
the dashed yellow line the ground truth (where the lines overlap
they seem orange).

shows several advantages over general image segmentation al-
gorithms (which do not respect the underlying physics and the
boundary conditions), and numerical experiments demonstrate
its capability to reconstruct very noisy (SNR = 2.5) images. Con-
sequently, our method provides a consistent treatment to recon-
struct and filter velocity fields from MRV data, when the geome-
try of the domain, the boundary conditions, and the forcing term
are not known beforehand. The extension of the above methods
to the Navier–Stokes problem is under development.
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[28] Nitsche, J., 1971. “Über ein Variationsprinzip zur Lösung
von Dirichlet-Problemen bei Verwendung von Teilräumen,
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